STK17T88 32K x 8 AutoStore nvSRAM with Real Time Clock Description nvSRAM Combined With Integrated Real-Time Clock Functions (RTC, Watchdog Timer, Clock Alarm, Power Monitor) The Cypress STK17T88 combines a 256 Kb nonvolatile static RAM (nvSRAM) with a full-featured real-time clock in a reliable, monolithic integrated circuit. Capacitor or Battery Backup for RTC 25, 45 ns Read Access and R/W Cycle Time The 256 Kb nvSRAM is a fast static RAM with a nonvolatile QuantumTrap storage element included with each memory cell. Unlimited Read/Write Endurance Automatic Nonvolatile STORE on Power Loss Nonvolatile STORE Under Hardware or Software Control Automatic RECALL to SRAM on Power Up Unlimited RECALL Cycles 200K STORE Cycles 20-Year Nonvolatile Data Retention Single 3V +20%, -10% Power Supply Commercial and Industrial Temperatures 48-Pin 300-mil SSOP Package (RoHS Compliant) ig ns Features D es The SRAM provides the fast access and cycle times, ease of use and unlimited read and write endurance of a normal SRAM. Data transfers automatically to the nonvolatile storage cells when power loss is detected (the STORE operation). On power up, data is automatically restored to the SRAM (the RECALL operation). Both STORE and RECALL operations are also available under software control. de d fo rN ew The real time clock function provides an accurate clock with leap year tracking and a programmable, high accuracy oscillator. The Alarm function is programmable for one-time alarms or periodic minutes, hours, or days alarms. There is also a programmable watchdog timer for processor control. om ROW DECODER VCC Quantum Trap 512 X 512 STORE STATIC RAM ARRAY 512 X 512 RECALL STORE/ RECALL CONTROL VRTCbat VRTCcap HSB SOFTWARE DETECT INPUT BUFFERS ot N DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 VCAP POWER CONTROL R ec A5 A6 A7 A8 A9 A11 A12 A13 A14 m en Logic Block Diagram A13 - A0 COLUMN I/O COLUMN DEC RTC X1 X2 INT A 0 A 1 A 2 A 3 A 4 A10 MUX A14 - A0 G E W Cypress Semiconductor Corporation Document Number: 001-52040 Rev. *C * 198 Champion Court * San Jose, CA 95134-1709 * 408-943-2600 Revised November 25, 2009 [+] Feedback STK17T88 Contents fo rN ew D es ig ns Software STORE.......................................................... Software RECALL ........................................................ Data Protection............................................................. Noise Considerations ................................................... Preventing AutoStore ................................................... Best Practices .............................................................. Real Time Clock................................................................. Reading the Clock ........................................................ Setting the Clock .......................................................... Backup Power .............................................................. Stopping and Starting the RTC Oscillator .................... Calibrating The Clock ................................................... Alarm ............................................................................ Watchdog Timer ........................................................... Power Monitor .............................................................. Interrupt Register.......................................................... Flags Register .............................................................. RTC Register Map.............................................................. Commercial and Industrial Ordering Information......................................................... Ordering Codes ................................................................. Package Diagram............................................................... Document History Page .................................................... Sales, Solutions, and Legal Information ......................... Worldwide Sales and Design Support.......................... Products ....................................................................... 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 17 17 18 22 22 23 24 24 24 24 N ot R ec om m en de d Features................................................................................ 1 Description........................................................................... 1 Logic Block Diagram........................................................... 1 Contents ............................................................................... 2 Pin Configurations .............................................................. 3 Pin Descriptions .................................................................. 3 Absolute Maximum Ratings ............................................... 4 RF (SSOP-48) Package Thermal Characteristics................................................................ 4 DC Characteristics (VCC = 2.7V-3.6V) ............................... 4 AC Test Conditions ............................................................. 5 Capacitance ......................................................................... 5 RTC DC Characteristics ...................................................... 6 SRAM READ Cycles #1 and #2........................................... 7 SRAM WRITE Cycles #1 and #2 ......................................... 8 AutoStore/Power Up RECALL ............................................ 9 Software-Controlled STORE/RECALL Cycle................... 10 Hardware STORE Cycle .................................................... 11 Soft Sequence Commands ............................................... 11 Mode Selection .................................................................. 12 nvSRAM Operation............................................................ 13 SRAM READ ................................................................ 13 SRAM WRITE .............................................................. 13 AutoStore Operation..................................................... 13 Hardware STORE (HSB) Operation............................. 13 Hardware Recall (POWER UP).................................... 13 Document Number: 001-52040 Rev. *C Page 2 of 24 [+] Feedback STK17T88 Pin Configurations Figure 1. 48-Pin SSOP 47 V CC NC 3 46 HSB A 12 A7 4 5 45 44 A6 A5 6 43 W A 13 A8 7 42 A9 INT 8 41 NC A4 9 40 A 11 NC 10 39 NC NC 11 38 NC NC V SS 12 37 NC 13 36 NC 14 35 15 34 V SS NC V RTCcap DQ 0 16 33 DQ 6 A3 A2 17 32 G 18 31 A 10 A1 19 30 A0 DQ 1 DQ 2 20 29 21 28 27 X1 22 23 26 DQ 4 DQ 3 X2 24 25 V CC ew E DQ 7 DQ 5 fo V RTCbat rN (TOP) Relative PCB Area Usage[1] ig ns 48 2 es 1 NC A 14 D V CAP d Pin Descriptions I/O Type Description A14-A0 Input DQ7-DQ0 I/O E Input Chip Enable: The active low E input selects the device. W Input Write Enable: The active low W enables data on the DQ pins to be written to the address location selected on the falling edge of E. G Input Output Enable: The active low G input enables the data output buffers during read cycles. De-asserting G high caused the DQ pins to tristate. X1 Output de Pin Name en Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array or one of 16 bytes in the clock register map. ec om m Data: Bi-directional 8-bit data bus for accessing the nvSRAM and RTC. R Crystal Connection, Drives Crystal on Startup. Input Power Supply Capacitor Supplied Backup RTC Supply Voltage (Left unconnected if VRTCbat is used). VRTCbat Power Supply Battery Supplied Backup RTC Supply Voltage (Left unconnected if VRTCcap is used). Power Supply Power: 3.0V, +20%, -10% N VCC ot X2 VRTCcap Crystal Connection for 32.768 kHz Crystal. HSB I/O Hardware Store Busy: When low this output indicates a store is in progress. When pulled low external to the chip, it initiates a nonvolatile STORE operation. A weak pull up resistor keeps this pin high if not connected. (Connection Optional). INT Output Interrupt Control: Can be programmed to respond to the clock alarm, the watchdog timer and the power monitor. Programmable to either active high (push/pull) or active low (open-drain) VCAP Power Supply AutoStore Capacitor: Supplies power to nvSRAM during power loss to store data from SRAM to nonvolatile storage elements. VSS Power Supply Ground. NC No Connect Unlabeled Pins have no Internal Connections. Note 1. For detailed package size specifications, see Package Diagram on page 23. Document Number: 001-52040 Rev. *C Page 3 of 24 [+] Feedback STK17T88 Absolute Maximum Ratings Note Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Voltage on Input Relative to Ground.................-0.5V to 4.1V Voltage on Input Relative to VSS ...........-0.5V to (VCC + 0.5V) Voltage on DQ0-7 or HSB ......................-0.5V to (VCC + 0.5V) Temperature under Bias ............................... -55C to 125C Junction Temperature ................................... -55C to 140C Storage Temperature .................................... -65C to 150C ig ns Power Dissipation............................................................. 1W DC Output Current (1 output at a time, 1s duration).... 15 mA RF (SSOP-48) Package Thermal Characteristics Average VCC Current ICC2 Average VCC Current during STORE 3 ICC3 Average VCC Current at tAVAV = 200 ns 3V, 25C, Typical 10 ICC4 Average VCAP Current during AutoStore Cycle ISB VCC Standby Current (Standby, Stable CMOS Levels) IILK Input Leakage Current IOLK Off-State Output Leakage Current Input Logic "1" Voltage Input Logic "0" Voltage Output Logic "1" Voltage Output Logic "0" Voltage Operating Temperature Operating Voltage Storage Capacitance Nonvolatile STORE Operations Data Retention DATAR D Notes mA mA tAVAV = 25 ns tAVAV = 45 ns Dependent on output loading and cycle rate. Values obtained without output loads. All Inputs Don't Care, VCC = Max Average current for duration of STORE cycle (tSTORE) W (V CC - 0.2V) All Other Inputs Cycling at CMOS Levels Dependent on output loading and cycle rate. Values obtained without output loads. All Inputs Don't Care Average current for duration of STORE cycle (tSTORE) E (VCC -0.2V) All Others VIN 0.2V or (VCC-0.2V) Standby current level after nonvolatile cycle complete VCC = Max VIN = VSS to VCC VCC = Max VIN = VSS to VCC, E or G VIH All Inputs All Inputs IOUT = - 2 mA IOUT = 4 mA 3 mA 10 mA 3 3 mA 3 3 mA 1 1 A 1 1 A de en m om ec R ot N VIH VIL VOH VOL TA VCC VCAP NVC Units rN ICC1 Industrial Min Max 70 55 ew Commercial Min Max 65 50 Parameter fo Symbol (VCC = 2.7V-3.6V) d DC Characteristics es jc 6.2 C/W; ja 51.1 [0 fpm], 44.7 [200 fpm], 41.8 C/W [500 fpm] 2.0 VCC + 0.5 2.0 VCC + 0.5 VSS - 0.5 0.8 VSS - 0.5 0.8 2.4 2.4 0.4 0.4 0 70 - 40 85 2.7 3.6 2.7 3.6 17 57 17 57 200 200 20 20 V V V V C V F K 3.0V +20%, -10% Between VCAP pin and VSS, 5V rated. Years At 55C Note The HSB pin has IOUT=-10 A for VOH of 2.4V, this parameter is characterized but not tested. The INT is open-drain and does not source or sink high current when interrupt register bit D3 is low. Document Number: 001-52040 Rev. *C Page 4 of 24 [+] Feedback STK17T88 AC Test Conditions Input Pulse Levels ....................................................0V to 3V Input Rise and Fall Times .................................................. 5 ns Input and Output Timing Reference Levels .................... 1.5V Output Load..................................See Figure 2 and Figure 3 Capacitance Symbol Parameter[2] Max Units Conditions Input Capacitance 7 pF V = 0 to 3V COUT Output Capacitance 7 pF V = 0 to 3V es ig ns CIN Figure 3. AC Output Loading for Tristate Specifications (THZ, tLZ, tWLQZ, tWHQZ, tGLQX, tGHQZ) N ot R ec om m en de d fo rN ew D Figure 2. AC Output Loading Note 2. These parameters are guaranteed but not tested. Document Number: 001-52040 Rev. *C Page 5 of 24 [+] Feedback STK17T88 RTC DC Characteristics Commercial Symbol Industrial Parameter Units Min VRTCbat Notes Max - 300 - 350 nA From either VRTCcap or VRTCbat RTC Battery Pin Voltage 1.8 3.3 1.8 3.3 V Typical = 3.0V during normal operation VRTCcap RTC Capacitor Pin Voltage 1.2 2.7 1.2 2.7 V Typical = 2.4V during normal operation tOSCS RTC Oscillator Time to Start - 10 - 10 sec At minimum temperature from power up or enable - 5 - 5 sec At 25C from power up or enable ig ns RTC Backup Current Min fo Y1 X1 X2 en de d C2 RF C1 rN ew D Figure 4. RTC Component Configuration es IBAK Max m Recommended Values C2 = 56 pF 10% (do not vary from this value) N ot R ec om Y1 = 32.768 kHz RF = 10 MO C1 = 0 (install cap footprint, but leave unloaded) Document Number: 001-52040 Rev. *C Page 6 of 24 [+] Feedback STK17T88 SRAM READ Cycles #1 and #2 Symbols No. STK17T88-25 STK17T88-45 Min Min Parameter #1 #2 1 Units Alt. tELQV tACS Chip Enable Access Time Max Max 25 45 ns 2 tAVAV[3] tELEH[5] tRC Read Cycle Time 3 tAVQV[4] tAVQV[6] tAA Address Access Time 25 45 ns tGLQV tOE Output Enable to Data Valid 12 20 ns tAXQX tOH Output Hold after Address Change 3 6 tELQX tLZ Address Change or Chip Enable to Output Active 3 7 tEHQZ tHZ Address Change or Chip Disable to Output Inactive 8 tGLQX tOLZ Output Enable to Output Active 9 tGHQZ[5] tOHZ Output Disable to Output Inactive 10 tELICCL[3] tPA Chip Enable to Power Active tPS Chip Disable to Power Standby tEHICCH [3] ig ns ns 3 ns es 3 D 10 0 ns 15 0 10 ns 15 0 0 25 ns ns ns 45 ns fo 11 tAXQX 45 ew 5 [4] rN 4 25 d Figure 5. SRAM READ Cycle #1: Address Controlled[3,4,6] de 2 tAVAV en ADDRESS 5 3 tAVQV tAXQX DATA VALID om m DQ (DATA OUT) 2 29 1 11 6 ot R ec Figure 6. SRAM READ Cycle #2: E and G Controlled[6] N 7 3 9 4 8 10 Notes 3. W must be high during SRAM READ cycles. 4. Device is continuously selected with E and G both low 5. Measured 200 mV from steady state output voltage. 6. HSB must remain high during READ and WRITE cycles. Document Number: 001-52040 Rev. *C Page 7 of 24 [+] Feedback STK17T88 SRAM WRITE Cycles #1 and #2 Symbols No. STK17T88-25 STK17T88-45 Min Min Parameter #1 #2 Units Alt. Max Max tAVAV tWC Write Cycle Time 25 45 ns 13 tWLWH tWLEH tWP Write Pulse Width 20 30 ns 14 tELWH tELEH tCW Chip Enable to End of Write 20 30 ns 15 tDVWH tDVEH tDW Data Setup to End of Write 10 15 ns 16 tWHDX tEHDX tDH Data Hold after End of Write 0 0 ns 17 tAVWH tAVEH tAW Address Setup to End of Write 20 30 ns 18 tAVWL tAVEL tAS Address Setup to Start of Write 0 0 ns 19 tWHAX tEHAX tWR Address Hold after End of Write 0 0 ns 20 tWLQZ tWZ Write Enable to Output Disable 21 tWHQX tOW Output Active after End of Write D es ig ns 12 tAVAV ew 10 3 ns ns rN 3 15 Figure 7. SRAM WRITE Cycle #1: W Controlled[7, 8] fo 12 tAVAV ADDRESS 19 tWHAX de d 14 tELWH E en 17 tAVWH 18 tAVWL om m W ec DATA IN DATA OUT 13 tWLWH 15 tDVWH DATA VALID 20 tWLQZ Figure 8. SRAM WRITE Cycle #2: E Controlled[7, 8] ot R 21 tWHQX HIGH IMPEDANCE PREVIOUS DATA N 16 tWHDX 12 tAVAV ADDRESS 18 tAVEL 14 tELEH 19 tEHAX E 17 tAVEH 13 tWLEH W 15 tDVEH DATA IN DATA OUT 16 tEHDX DATA VALID HIGH IMPEDANCE Notes 7. If W is low when E goes low, the outputs remain in the high impedance state. 8. E or W must be VIH during address transitions. Document Number: 001-52040 Rev. *C Page 8 of 24 [+] Feedback STK17T88 AutoStore/Power Up RECALL Symbols STK17T88 No. Parameter Standard Units Notes 40 ms 9 STORE Cycle Duration 12.5 ms 10, 11 2.65 V Alternate Min 22 tHRECALL 23 tSTORE 24 VSWITCH Low Voltage Trigger Level 25 VCCRISE VCC Rise Time Max Power up RECALL Duration S 150 ig ns tHLHZ de d fo rN ew D es Figure 9. AutoStore Power Up RECALL 23 23 om m en 25 22 N ot R ec 22 Note Read and Write cycles are ignored during STORE, RECALL, and while VCC is below VSWITCH Notes 9. tHRECALL starts from the time VCC rises above VSWITCH 10. If an SRAM WRITE has not taken place since the last nonvolatile cycle, no STORE will take place 11. Industrial Grade devices require 15 ms maximum. Document Number: 001-52040 Rev. *C Page 9 of 24 [+] Feedback STK17T88 Software-Controlled STORE/RECALL Cycle In the following table, the software controlled STORE and RECALL cycle parameters are listed. [12, 13] Symbols No. STK17T88-35 STK17T88-45 Min Min Parameter E Cont Alternate Max Units Notes 13 Max tRC STORE/RECALL Initiation Cycle Time 25 45 ns 27 tAVEL tAS Address Setup Time 0 0 ns 28 tELEH tCW Clock Pulse Width 20 30 ns 29 tEHAX Address Hold Time 1 1 ns 30 tRECALL RECALL Duration ig ns 26 tAVAV 100 us es 100 D Figure 10. Software Store/Recall Cycle: E CONTROLLED[13] 26 27 rN ew 26 fo 28 23 30 N ot R ec om m en de d 29 Notes 12. The software sequence is clocked on the falling edge of E controlled READs 13. The six consecutive addresses must be read in the order listed in the Mode Selection table. W must be high during all six consecutive cycles. Document Number: 001-52040 Rev. *C Page 10 of 24 [+] Feedback STK17T88 Hardware STORE Cycle Symbols STK17T88 No. Parameter Standard 31 tDELAY 32 tHLHX Alternate tHLQZ Min Max Hardware STORE to SRAM Disabled 1 70 Hardware STORE Pulse Width 15 Units Notes s 14 ns ig ns Figure 11. Hardware STORE Cycle es 32 ew D 23 d fo rN 31 Parameter en Symbol No. STK17T88 Min m Standard tSS Soft Sequence Processing Time Units Notes s 15, 16 Max 70 om 33 de Soft Sequence Commands 33 33 N ot R ec Figure 12. Soft Sequence Command Notes 14. On a hardware STORE initiation, SRAM operation continues to be enabled for time tDELAY to allow read/write cycles to complete 15. This is the amount of time that it takes to take action on a soft sequence command. Vcc power must remain high to effectively register command. 16. Commands such as Store and Recall lock out I/O until operation is complete which further increases this time. See specific command Document Number: 001-52040 Rev. *C Page 11 of 24 [+] Feedback STK17T88 Mode Selection W G A14-A0 Mode I/O Power H X X X Not Selected Output High Z Standby L H L X Read SRAM Output Data Active L L X X Write SRAM Input Data Active L H L 0x0E38 0x31C7 0x03E0 0x3C1F 0x303F Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Output Data Output Data Output Data Output Data Output Data Active 0x0FC0 Nonvolatile Store Output High Z 0x0E38 0x31C7 0x03E0 0x3C1F 0x303F 0x0C63 Read SRAM Read SRAM Read SRAM Read SRAM Read SRAM Nonvolatile Recall Output Data Output Data Output Data Output Data Output Data Output High Z es ICC2 Active D L 17,18,19 17,18,19 ew H Notes N ot R ec om m en de d fo rN L ig ns E Notes 17. The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle. 18. While there are 15 addresses on the STK17T88, only the lower 13 are used to control software modes. 19. I/O state depends on the state of G. The I/O table assumes G low. Document Number: 001-52040 Rev. *C Page 12 of 24 [+] Feedback STK17T88 nvSRAM Operation AutoStore Operation The STK17T88 stores data to nvSRAM using one of three storage operations. These operations are Hardware Store (activated by HSB), Software Store (activated by an address sequence), and AutoStore (on power down). The STK17T88 nvSRAM is made up of two functional components paired in the same physical cell. These are the SRAM memory cell and a nonvolatile QuantumTrap cell. The SRAM memory cell operates similar to a standard fast static RAM. Data in the SRAM can be transferred to the nonvolatile cell (the STORE operation), or from the nonvolatile cell to SRAM (the RECALL operation). This unique architecture allows all cells to be stored and recalled in parallel. During the STORE and RECALL operations SRAM READ and WRITE operations are inhibited. The STK17T88 supports unlimited read and writes similar to a typical SRAM. In addition, it provides unlimited RECALL operations from the nonvolatile cells and up to 200K STORE operations. AutoStore operation, a unique feature of Cypress QuanumTrap technology that is a standard feature on the STK17T88. ig ns During normal operation, the device draws current from VCC to charge a capacitor connected to the VCAP pin. This stored charge is used by the chip to perform a single STORE operation. If the voltage on the VCC pin drops below VSWITCH, the part automatically disconnects the VCAP pin from VCC. A STORE operation is initiated with power provided by the VCAP capacitor. Figure 13 shows the proper connection of the storage capacitor (VCAP) for automatic store operation. Refer to the DC Characteristics (VCC = 2.7V-3.6V) table for the size of the capacitor. The voltage on the VCAP pin is driven to 5V by a charge pump internal to the chip. A pull up should be placed on W to hold it inactive during power up. D ew d de 0.1F N ot R ec om W m VCAP 10k Ohm V CC en V CC SRAM WRITE rN Hardware STORE (HSB) Operation Figure 13. AutoStore Mode V CAP To reduce unnecessary nonvolatile stores, AutoStore and Hardware Store operations are ignored unless at least one WRITE operation has taken place since the most recent STORE or RECALL cycle. Software initiated STORE cycles are performed regardless of whether a WRITE operation has taken place. The HSB signal can be monitored by the system to detect an AutoStore cycle is in progress. fo The STK17T88 performs a READ cycle whenever E and G are low while W and HSB are high. The address specified on pins A0-14 determine which of the 32,768 data bytes are accessed. When the READ is initiated by an address transition, the outputs are valid after a delay of tAVQV (READ cycle #1). If the READ is initiated by E and G, the outputs are valid at tELQV or at tGLQV, whichever is later (READ cycle #2). The data outputs repeatedly respond to address changes within the tAVQV access time without the need for transitions on any control input pins, and remain valid until another address change or until E or G is brought high, or W and HSB is brought low. es SRAM READ A WRITE cycle is performed whenever E and W are low and HSB is high. The address inputs must be stable prior to entering the WRITE cycle and must remain stable until either E or W goes high at the end of the cycle. The data on the common I/O pins DQ0-7 are written into memory if it is valid tDVWH before the end of a W controlled WRITE or tDVEH before the end of an E controlled WRITE. It is recommended that G be kept high during the entire WRITE cycle to avoid data bus contention on common I/O lines. If G is left low, internal circuitry turns off the output buffers tWLQZ after W goes low. Document Number: 001-52040 Rev. *C The STK17T88 provides the HSB pin to control and acknowledge the STORE operations. The HSB pin can be used to request a hardware STORE cycle. When the HSB pin is driven low, the STK17T88 conditionally initiates a STORE operation after tDELAY. An actual STORE cycle only begins if a WRITE to the SRAM took place since the last STORE or RECALL cycle. The HSB pin has a very resistive pull up and is internally driven low to indicate a busy condition while the STORE (initiated by any means) is in progress. This pin must be externally pulled up if it is used to drive other inputs. SRAM READ and WRITE operations that are in progress when HSB is driven low by any means are given time to complete before the STORE operation is initiated. After HSB goes low, the STK17T88 continues to allow SRAM operations for tDELAY. During tDELAY, multiple SRAM READ operations may take place. If a WRITE is in progress when HSB is pulled low, it is allowed a time, tDELAY, to complete. However, any SRAM WRITE cycles requested after HSB goes low are inhibited until HSB returns high. During any STORE operation, regardless of how it was initiated, the STK17T88 continues to drive the HSB pin low, releasing it only when the STORE is complete. Upon completion of the STORE operation, the STK17T88 remains disabled until the HSB pin returns high. If HSB is not used, it should be left unconnected. Hardware Recall (POWER UP) During power up or after any low power condition (VCCVSWITCH. When set to `0', the INT pin is active low and the drive mode is open-drain. The active low (open drain) output is maintained even when power is lost. Figure 14. Interrupt Block Diagram WDF P/L PFE Pin Driver H/L VINT VCC Pulse/Level (P/L). When set to `1', the INT pin is driven for approximately 200 ms when the interrupt occurs. The pulse is reset when the Flags register is read. When P/L is set to `0', the INT pin is driven high or low (determined by H/L) until the Flags register is read. INT VSS AF Clock Alarm The Interrupt register is loaded with the default value 00h at the factory. Configure the Interrupt register to the desired value for the desired mode of operation. Once configured, the value is retained during power failures. AIE Interrupt Register Watchdog Interrupt Enable (WIE). When set to `1', the watchdog timer drives the INT pin when a watchdog time-out occurs. When WIE is set to `0', the watchdog time-out only sets the WDF flag bit. Flags Register ig ns Power Monitor WIE PF es Watchdog Timer D The Flags register has three flag bits: WDF, AF, and PF. These flags are set by the watchdog time-out, alarm match, or power fail monitor respectively. The processor can either poll this register or enable the interrupts to be informed when a flag is set. The flags are automatically reset when the register is read. ew Alarm Interrupt Enable (AIE). When set to `1', the INT pin is driven when an alarm match occurs. When set to `0', the alarm match only sets the AF flag bit. The Flags register is automatically loaded with the value 00h on power up (with the exception of the OSCF bit). N ot R ec om m en de d fo rN Power Fail Interrupt Enable (PFE). When set to `1', the INT pin is driven by a power fail signal from the power monitor. When set to `0', only the PF flag is set. Document Number: 001-52040 Rev. *C Page 17 of 24 [+] Feedback STK17T88 RTC Register Map BCD Format Data D2 10s Years 0 0 0x7FFD 0 0 0x7FFC 0 0 0x7FFB 0 0 0x7FFA 0 0 0 0 0x7FF7 WDS WDW 0x7FF6 WIE[0] AIE[0] 0x7FF5 M 0 0 M Months: 01-12 Day of Month Day of Month: 01-31 Hours: 00-23 Minutes: 00-59 Seconds Seconds: 00-59 Calibration [00000] WDT PFE[0] 0 H/L [1] P/L [0] 0 10s Alarm Date Alarm Day 10s Alarm Hours 10 Alarm Seconds 10s Centuries AF PF Day of week: 01-07 Hours 10 Alarm Minutes WDF Months Day of Week 10s Seconds 0x7FF1 Years: 00-99 rN 0x7FF2 Years Minutes Cal Sign OSCF Function/Range D0 0 Calibration values[20] Watchdog[20] Interrupts[20] 0 Alarm, Day of Month: 01-31 Alarm Hours Alarm, hours: 00-23 Alarm Minutes Alarm, minutes: 00-59 fo M D1 ew 0 M 0 10s Hours OSCEN [0] 0x7FF4 0 10s Minutes 0x7FF8 0x7FF3 10s Months 10s Day of Month 0x7FF9 0x7FF0 D3 Alarm Seconds Alarm, seconds: 00-59 Centuries Centuries: 00-99 d 0x7FFE D4 ig ns 0x7FFF D5 es D6 D D7 CAL[0] W[0] R[0] Flags[20] de Register 0 - Not implemented, reserved for future use. en Default Settings of nonvolatile Calibration and Interrupt registers from factory. Calibration Register=00h. m Interrupt Register=00h. om Configure the desired value at startup or during operation; the value is then retained during a power failure. N ot R ec [ ] designates values shipped from the factory. See Stopping and Starting the RTC Oscillator on page 15. Note 20. A binary value, not a BCD value. Document Number: 001-52040 Rev. *C Page 18 of 24 [+] Feedback STK17T88 Register Map Detail Real Time Clock - Years 0x7FFF D7 D6 D5 D4 D3 D2 10s Years D1 D0 Years Contains the lower two BCD digits of the year. Lower nibble contains the value for years; upper nibble contains the value for 10s of years. Each nibble operates from 0 to 9. The range for the register is 0 to 99. Real Time Clock - Months D7 D6 D5 D4 D3 0 0 0 10s Month D2 D1 D0 Months ig ns 0x7FFE Real Time Clock - Date D7 D6 0 0 D5 D4 D3 D2 D 0x7FFD es Contains the BCD digits of the month. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble (one bit) contains the upper digit and operates from 0 to 1. The range for the register is 1 to 12. 10s Day of month D1 D0 Day of month rN ew Contains the BCD digits for the date of the month. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble contains the upper digit and operates from 0 to 3. The range for the register is 1 to 31. Leap years are automatically adjusted for. Real Time Clock - Day D7 D6 D5 D4 D3 0 0 0 0 0 fo 0x7FFC D2 D1 D0 Day of week de d Lower nibble contains a value that correlates to day of the week. Day of the week is a ring counter that counts from 1 to 7 then returns to 1. The user must assign meaning to the day value, as the day is not integrated with the date. Real Time Clock - Hours D6 0 0 D5 en D7 D4 D3 D2 10s Hours D1 D0 Hours m 0x7FFB 0x7FFA D6 ec D7 om Contains the BCD value of hours in 24 hour format. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble (two bits) contains the upper digit and operates from 0 to 2. The range for the register is 0 to 23. D4 D3 D2 10s Minutes D1 D0 Minutes R 0 Real Time Clock - Minutes D5 N 0x7FF9 ot Contains the BCD value of minutes. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble contains the upper minutes digit and operates from 0 to 5. The range for the register is 0 to 59. D7 Real Time Clock - Seconds D6 0 D5 D4 D3 D2 10s Seconds D1 D0 Seconds Contains the BCD value of seconds. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble contains the upper digit and operates from 0 to 5. The range for the register is 0 to 59. 0x7FF8 Calibration D7 D6 D5 OSCEN 0 Calibration Sign D4 D3 D2 D1 D0 Calibration OSCEN Oscillator Enable. When set to `1', the oscillator is disabled. When set to `0', the oscillator is enabled. Disabling the oscillator saves battery/capacitor power during storage. Calibration Sign Determines if the calibration adjustment is applied as an addition to or as a subtraction from the time-base. Calibration These five bits control the calibration of the clock. Document Number: 001-52040 Rev. *C Page 19 of 24 [+] Feedback STK17T88 Register Map Detail (continued) Watchdog Timer 0x7FF7 D7 D6 WDS WDW D5 D4 D3 D2 D1 D0 WDT Watchdog Strobe. Setting this bit to `1' reloads and restarts the watchdog timer. The bit is cleared automatically when the watchdog timer is reset. The WDS bit is write only. Reading it always returns a `0'. WDW Watchdog Write Enable. Set this bit to `1' to disable writing of the watchdog time-out value (WDT5-WDT0). This allows to strobe the watchdog without disturbing the time-out value. Setting this bit to `0' allows bits 5-0 to be written. WDT Watchdog time-out selection. The watchdog timer interval is selected by the 6-bit value in this register. It represents a multiplier of the 32 Hz count (31.25 ms). The range or time-out values is 31.25 ms (a setting of `1') to 2 seconds (setting of 3Fh). Setting the watchdog timer register to `0' disables the timer. These bits can be written only if the WDW bit was cleared to `0' on a previous cycle. es ig ns WDS D7 D6 D5 D4 D3 WIE AIE PFIE ABE H/L D2 D1 D0 P/L 0 0 D Interrupt 0x7FF6 Watchdog Interrupt Enable. When set to `1' and a watchdog time-out occurs, the watchdog timer drives the INT pin and sets the WDF flag. When set to `0', the watchdog time-out only sets the WDF flag. AIE Alarm Interrupt Enable. When set to `1', the alarm match drives the INT pin and sets the AF flag. When set to `0', the alarm match only sets the AF flag. PFIE Power-Fail Enable. When set to `1', a power failure drives the INT pin and sets the PF flag. When set to `0', a power failure only sets the PF flag. Reserved for Future Use d 0 fo rN ew WIE High/Low. When set to a `1', the INT pin is driven active high. When set to `0', the INT pin is open drain, active low. P/L Pulse/Level. When set to a `1', the INT pin is driven active (determined by H/L) by an interrupt source for approximately 200 ms. When set to `0', the INT pin is driven to an active level (as set by H/L) until the Flags register is read. en de H/L M Alarm - Day D5 0 10s Alarm Date D6 om D7 m 0x7FF5 D4 D3 D2 D1 D0 Alarm Date ec Contains the alarm value for the date of the month and the mask bit to select or deselect the date value. Match. Setting this bit to `0' causes the date value to be used in the alarm match. Setting this bit to `1' causes the match circuit to ignore the date value. N M 0x7FF3 Alarm - Hours D7 D6 M 0 ot 0x7FF4 R M D5 D4 D3 D2 10s Alarm Hours D1 D0 Alarm Hours Contains the alarm value for the hours and the mask bit to select or deselect the hours value. Match. Setting this bit to `0' causes the hours value to be used in the alarm match. Setting this bit to `1' causes the match circuit to ignore the hours value. Alarm - Minutes D7 M D6 D5 10s Alarm Minutes D4 D3 D2 D1 D0 Alarm Minutes Contains the alarm value for the minutes and the mask bit to select or deselect the minutes value. M Match. Setting this bit to `0' causes the minutes value to be used in the alarm match. Setting this bit to `1' causes the match circuit to ignore the minutes value. Document Number: 001-52040 Rev. *C Page 20 of 24 [+] Feedback STK17T88 Register Map Detail (continued) Alarm - Seconds 0x7FF2 D7 D6 M D5 D4 D3 D2 10s Alarm Seconds D1 D0 Alarm Seconds Contains the alarm value for the seconds and the mask bit to select or deselect the seconds' value. M Match. Setting this bit to `0' causes the seconds' value to be used in the alarm match. Setting this bit to `1' causes the match circuit to ignore the seconds value. Real Time Clock - Centuries 0x7FF1 Centuries ig ns 10s Centuries D7 D6 D5 D4 D3 WDF AF PF OSCF 0 D2 D1 D0 D Flags 0x7FF0 es Contains the BCD value of centuries. Lower nibble contains the lower digit and operates from 0 to 9; upper nibble contains the upper centuries digit and operates from 0 to 9. The range for the register is 0 to 99 centuries. W R CAL Watchdog Timer Flag. This read only bit is set to `1' when the watchdog timer is allowed to reach `0' without being reset by the user. It is cleared to `0' when the Flags register is read or on power up. AF Alarm Flag. This read only bit is set to `1' when the time and date match the values stored in the Alarm registers with the match bits equal to `0'. It is cleared when the Flags register is read or on power up. PF Power Fail Flag. This read only bit is set to `1' when power falls below the power-fail threshold VSWITCH. It is cleared to `0' when the Flags register is read or on power up. OSCF Oscillator Fail Flag. Set to `1' on power up only if the oscillator is enabled and not running in the first 5 ms of operation. This indicates that the RTC backup power failed and the clock value is no longer valid. Reset this bit to `0' to clear this condition. CAL Calibration Mode. When set to `1', a 512 Hz square wave is output on the INT pin. When set to `0', the INT pin resumes normal operation. This bit defaults to `0' (disabled) on power up. W Write Time. Setting the W bit to `1' freezes updates of the RTC registers. The user can then write to the RTC registers, Alarm registers, Calibration register, Interrupt register, and Flags register. Setting the W bit to `0' disables writes to the registers and causes the contents of the real time clock registers to be transferred to the timekeeping counters if the time has changed (a new base time is loaded). The bit defaults to `0' on power up. R Read Time. Setting the R bit to `1' captures the current time in holding registers so that clock updates are not during the reading process. Set the R bit to `0' to enable the holding register to resume clock updates. The bit defaults to `0' on power up. N ot R ec om m en de d fo rN ew WDF Document Number: 001-52040 Rev. *C Page 21 of 24 [+] Feedback STK17T88 Commercial and Industrial Ordering Information STK17T88 - R F 45 I TR Packaging Option: TR = Tape and Reel Blank = Tube ig ns Temperature Range: C - Commercial (0 to 70C) I - Industrial (-40 to 85C) Lead Finish Speed: 25 - 25 ns 45 - 45 ns D es F = 100% Sn (Matte Tin) RoHS Compliant ew Package: R = Plastic 48-pin 330 mil SSOP 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 Access Time (ns) 25 Temperature Commercial 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 45 Commercial STK17T88-RF25TR 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 25 Commercial STK17T88-RF45TR 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 45 Commercial STK17T88-RF25I 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 25 Industrial STK17T88-RF45I 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 45 Industrial STK17T88-RF25ITR 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 25 Industrial STK17T88-RF45ITR 3.3V 32Kx8 AutoStore nvSRAM+RTC SSOP48-300 45 Industrial N ot R ec om m de d STK17T88-RF45 en STK17T88-RF25 fo These parts are not recommended for new designs. Ordering Code Description rN Ordering Codes Document Number: 001-52040 Rev. *C Page 22 of 24 [+] Feedback STK17T88 Package Diagram 51-85061-*C N ot R ec om m en de d fo rN ew D es ig ns Figure 15. 48-Pin SSOP (51-85061) Document Number: 001-52040 Rev. *C Page 23 of 24 [+] Feedback STK17T88 Document History Page Document Title: STK17T88 32K x 8 AutoStore nvSRAM with Real-Time Clock Document Number: 001- 52040 Rev. ECN No. Orig. of Change Submission Date ** 2668660 GVCH/PYRS 03/04/2009 New data sheet *A 2675319 GVCH 03/17/2009 Corrected typo on page 1 in `Description' section: changed 256KB to 256Kb. *B 2793420 GVCH/AESA 10/27/09 *C 2814390 GVCH 11/25/2009 Description of change ig ns Figure 1: Updated pin 43 from A6 to A8. Updated tRECALL unit from ms to us es Added note in the Ordering Information section mentioning that these parts are not recommended for new designs. Added "Not recommended for new designs" watermark in the PDF.. D Sales, Solutions, and Legal Information ew Worldwide Sales and Design Support rN Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales. Products psoc.cypress.com Clocks & Buffers clocks.cypress.com wireless.cypress.com Memories memory.cypress.com de d Wireless fo PSoC image.cypress.com ot R ec om m en Image Sensors N (c) Cypress Semiconductor Corporation, 2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 001-52040 Rev. *C Revised November 25, 2009 Page 24 of 24 All products and company names mentioned in this document may be the trademarks of their respective holders. [+] Feedback