PD - 94623A IRGP35B60PD SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 1.85V @ VGE = 15V IC = 22A C Applications * * * * Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Features * * * * * * * Equivalent MOSFET Parameters RCE(on) typ. = 84m ID (FET equivalent) = 35A G E NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel E Benefits G * Parallel Operation for Higher Current Applications * Lower Conduction Losses and Switching Losses * Higher Switching Frequency up to 150kHz C TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25C Continuous Collector Current 60 IC @ TC = 100C Continuous Collector Current 34 ICM 120 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current 120 IF @ TC = 25C Diode Continous Forward Current 40 IF @ TC = 100C Diode Continous Forward Current Maximum Repetitive Forward Current IFRM d A 15 e 60 VGE Gate-to-Emitter Voltage 20 V PD @ TC = 25C Maximum Power Dissipation 308 W PD @ TC = 100C Maximum Power Dissipation TJ Operating Junction and 123 TSTG Storage Temperature Range -55 to +150 Soldering Temperature for 10 sec. C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf*in (1.1 N*m) Thermal Resistance Min. Typ. Max. Units RJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter --- --- 0.41 C/W RJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) --- --- 1.7 RCS Thermal Resistance, Case-to-Sink (flat, greased surface) --- 0.24 --- RJA Thermal Resistance, Junction-to-Ambient (typical socket mount) --- --- 40 Weight --- 6.0 (0.21) --- 1 g (oz) www.irf.com 12/15/03 IRGP35B60PD Electrical Characteristics @ TJ = 25C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 -- -- V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage -- 0.78 -- RG Internal Gate Resistance -- 1.7 -- -- 1.85 2.15 -- 2.25 2.55 -- 2.37 2.80 VCE(on) Collector-to-Emitter Saturation Voltage Max. Units V Conditions V/C VGE = 0V, IC = 1mA (25C-125C) 1MHz, Open Collector IC = 22A, VGE = 15V V IC = 22A, VGE = 15V, TJ = 125C IC = 35A, VGE = 15V, TJ = 125C -- 3.00 3.45 Gate Threshold Voltage 3.0 4.0 5.0 VGE(th)/TJ Threshold Voltage temp. coefficient -- -10 -- gfe Forward Transconductance -- 36 -- S ICES Collector-to-Emitter Leakage Current -- 3.0 375 A VGE = 0V, VCE = 600V -- 0.35 -- mA VGE = 0V, VCE = 600V, TJ = 125C -- 1.30 1.70 V -- 1.20 1.60 -- -- 100 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 4, 5,6,8,9 IC = 35A, VGE = 15V VGE(th) VFM Ref.Fig VGE = 0V, IC = 500A V IC = 250A 7,8,9 mV/C VCE = VGE, IC = 1.0mA VCE = 50V, IC = 22A, PW = 80s IF = 15A, VGE = 0V 10 IF = 15A, VGE = 0V, TJ = 125C nA VGE = 20V, VCE = 0V Switching Characteristics @ TJ = 25C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter -- 160 Max. Units 240 Gate-to-Collector Charge (turn-on) -- 55 83 Conditions nC 17 VCC = 400V CT1 VGE = 15V Qge Gate-to-Emitter Charge (turn-on) -- 21 32 Eon Turn-On Switching Loss -- 220 270 Eoff Turn-Off Switching Loss -- 215 265 Etotal Total Switching Loss -- 435 535 TJ = 25C td(on) Turn-On delay time -- 26 34 IC = 22A, VCC = 390V tr Rise time -- 6.0 8.0 td(off) Turn-Off delay time -- 110 122 tf Fall time -- 8.0 10 Eon Turn-On Switching Loss -- 410 465 Eoff Turn-Off Switching Loss -- 330 405 Etotal Total Switching Loss -- 740 870 TJ = 125C td(on) Turn-On delay time -- 26 34 IC = 22A, VCC = 390V tr Rise time -- 8.0 11 td(off) Turn-Off delay time -- 130 150 tf Fall time -- 12 16 Cies Input Capacitance -- 3715 -- VGE = 0V Coes Output Capacitance -- 265 -- VCC = 30V Cres Coes eff. Reverse Transfer Capacitance Effective Output Capacitance (Time Related) Coes eff. (ER) Effective Output Capacitance (Energy Related) RBSOA Reverse Bias Safe Operating Area g g -- 47 -- -- 135 -- -- 179 -- Ref.Fig IC = 22A IC = 22A, VCC = 390V J ns CT3 VGE = +15V, RG = 3.3, L = 200H f CT3 VGE = +15V, RG = 3.3, L = 200H TJ = 25C f IC = 22A, VCC = 390V J ns CT3 VGE = +15V, RG = 3.3, L = 200H f WF1,WF2 CT3 VGE = +15V, RG = 3.3, L = 200H f TJ = 125C pF 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V FULL SQUARE 11,13 15 TJ = 150C, IC = 120A 3 VCC = 480V, Vp =600V CT2 Rg = 22, VGE = +15V to 0V trr Diode Reverse Recovery Time Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current -- 42 60 -- 74 120 -- 80 180 -- 220 600 -- 4.0 6.0 -- 6.5 10 ns nC A TJ = 25C IF = 15A, VR = 200V, TJ = 125C di/dt = 200A/s 19 TJ = 25C IF = 15A, VR = 200V, 21 TJ = 125C TJ = 25C di/dt = 200A/s IF = 15A, VR = 200V, 19,20,21,22 TJ = 125C di/dt = 200A/s CT5 Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 1.85V and IC =22A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 15V, L = 28 H, RG = 22 . Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com 70 350 60 300 50 250 40 200 Ptot (W) IC (A) IRGP35B60PD 30 150 20 100 10 50 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (C) T C (C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 70 1000 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 IC A) ICE (A) 100 40 30 10 20 10 0 1 10 100 0 1000 1 2 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 150C; VGE =15V 5 70 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 60 50 40 ICE (A) ICE (A) 4 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s 70 30 40 30 20 20 10 10 0 0 0 1 2 3 4 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s www.irf.com 3 VCE (V) 5 0 1 2 3 4 5 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125C; tp = 80s 3 IRGP35B60PD 800 10 700 600 T J = 25C 9 T J = 125C 8 7 VCE (V) ICE (A) 500 400 300 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 200 TJ = 125C 3 100 T J = 25C 2 0 1 0 5 10 15 20 0 5 VGE (V) 10 15 20 VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10s Fig. 8 - Typical VCE vs. VGE TJ = 25C 10 100 InstantaneousF orw ardC urrent -I (A ) 9 F 8 VCE (V) 7 ICE = 11A 6 ICE = 22A 5 ICE = 35A 4 3 10 TJ = 150C TJ = 125C TJ = 25C 2 1 1 0.8 0 5 10 15 20 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125C Fig. 10 - Typ. Diode Forward Characteristics tp = 80s 800 1000 700 EON Swiching Time (ns) Energy (J) 600 500 400 EOFF 300 td OFF 100 tdON tF 10 200 tR 100 0 1 0 5 10 15 20 25 30 35 40 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125C; L = 200H; VCE = 390V, RG = 3.3; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) 4 0 10 20 30 40 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125C; L = 200H; VCE = 390V, RG = 3.3; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) www.irf.com IRGP35B60PD 800 1000 700 tdOFF 600 Swiching Time (ns) Energy (J) EON 500 400 EOFF 300 100 tdON tF 10 200 tR 100 0 1 0 10 20 30 40 50 0 10 20 30 40 50 RG ( ) RG () Fig. 13 - Typ. Energy Loss vs. RG TJ = 125C; L = 200H; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125C; L = 200H; VCE = 390V, ICE = 22A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 30 10000 Cies 25 Capacitance (pF) Eoes (J) 20 15 10 1000 Coes 100 Cres 5 0 10 0 100 200 300 400 500 600 700 0 20 VCE (V) 40 60 80 100 VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.4 14 Normalized V CE(on) (V) 400V 12 VGE (V) 10 8 6 4 1.2 1.0 2 0 0.8 0 50 100 150 200 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 22A www.irf.com -50 0 50 100 150 200 T J (C) Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 22A, VGE= 15V 5 IRGP35B60PD 100 100 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C 80 I IRRM - (A) t rr - (ns) I F = 30A I F = 30A 60 I F = 15A IF = 15A 10 I F = 5.0A 40 I F = 5.0A 20 100 di f /dt - (A/s) 1 100 1000 Fig. 19 - Typical Reverse Recovery vs. dif/dt 1000 di f /dt - (A/s) Fig. 20 - Typical Recovery Current vs. dif/dt 800 1000 VR = 200V TJ = 125C TJ = 25C VR = 200V TJ = 125C TJ = 25C di(rec)M/dt - (A/s) 600 Q RR - (nC) IF = 30A 400 I F = 15A IF = 5.0A I F = 5.0A I F = 15A I F = 30A 200 0 100 di f /dt - (A/s) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 1000 di f /dt - (A/s) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP35B60PD Thermal Response ( Z thJC ) 1 D = 0.50 0.20 0.1 0.10 0.05 0.01 J 0.01 0.02 R1 R1 J 1 R2 R2 2 1 2 R3 R3 3 C 0.077 0.194 3 Ci= i/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ri (C/W) i (sec) 0.139 0.000257 0.001418 0.020178 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 J 0.01 0.02 R1 R1 J 1 1 R2 R2 2 2 Ci= i/Ri Ci i/Ri 0.01 R3 R3 3 C 3 Ri (C/W) i (sec) 0.363 0.000112 0.864 0.473 0.001184 0.032264 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGP35B60PD L L VCC DUT 80 V DUT 0 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) L PFC diode R= DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 L = 70H D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP35B60PD 45 450 400 40 400 tf 300 90% ICE 350 30 300 200 20 5% VCE 150 15 100 5% ICE 50 0 40 TEST CURRENT 30 25 90% test current 200 100 5 50 0 0 0.00 0.20 0.40 -5 0.80 0.60 15 10 5% VCE 5 0 Eon Loss Eoff Loss -50 -0.20 20 10% test current 150 10 35 tr 250 25 VCE (V) VCE (V) 250 35 ICE (A) 350 45 ICE (A) 450 -50 9.00 9.20 Time(s) 9.40 -5 9.60 Time (s) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25C using Fig. CT.3 3 trr IF tb ta 0 Q rr 2 I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP35B60PD TO-247AC Package Outline Dimensions are shown in millimeters (inches) 3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M 15.90 (.626) 15.30 (.602) -B- -A5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 NOTES: 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIONS ARE SHOWN MILLIMETERS (INCHES). 4 CONFORMS TO JEDEC OUTLINE TO-247AC. -D- 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 4.50 (.177) LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR 3 -C- * 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) LEADED (20mm) * LONGER VERSION AVAILABLE (TO-247AD) TO ORDER ADD "-E" SUFFIX TO PART NUMBER 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M C AS 3.40 (.133) 3.00 (.118) 0.80 (.031) 3X 0.40 (.016) 2.60 (.102) 2.20 (.087) CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P) Dimensions in Millimeters and (Inches) TO-247AC Part Marking Information Notes : T his part marking information applies to devices produced before 02/26/2001 or for parts manufactured in GB. EXAMPLE: T HIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 3A1Q INT ERNAT IONAL RECTIFIER LOGO PART NUMBER IRFPE30 3A1Q 9302 DAT E CODE (YYWW) YY = YEAR WW = WEEK AS S EMBLY LOT CODE Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: T HIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 5657 AS S EMBLED ON WW 35, 2000 IN T HE AS S EMB LY LINE "H" INT E RNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 12/03 10 www.irf.com